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Abstract- The MRTD scheme is applied to the anal-

ysis of evanescent waveguide �lters. Speci�cally, a

space adaptive algorithm in 3 dimensions is imple-

mented by thesholding the wavelet values. The re-

sults are compared to those obtained by use of the

conventional FDTD to indicate considerable savings

in memory and computational time.

I Introduction

The Space Adaptive Gridding [1], based on the ap-

plication of the Multiresolution Analysis principles

to the discretization of the time-domain Maxwell's

equations [2, 3], has been employed in the analysis of

linear and nonlinear structures. It has o�ered signif-

icant savings in memory and execution time require-

ments. The application of the wavelets improve the

conditioning of the simulating algorithm and allow

for a space adaptive grid by thresholding the wavelet

coe�cients. This adaptivity is useful especially in

evanescent mode structures that require time-domain

simulations for a large time span in order to take into

consideration the slow wave propagation.

In this paper, a space adaptive grid is applied for

the analysis of evanescent-mode waveguide bandpass

�lters [4, 5, 6]. These structures have found many

applications in satellite communication systems, as

preselectors or in multiplexers, due to several ad-

vantages over the conventional coupled resonator �l-

ters, such as compactness and wide stopbands. The

S-parameters of one speci�c geometry are calculated

and compared to results obtained by the conventional

FDTD.

II The MRTD scheme

The 3D-MRTD scheme can be derived by repre-

senting the �eld components as a series of cubic

spline Battle-Lemarie scaling and wavelet functions

in space-domain and pulse function in time. Applying

the Method of Moments to the Maxwell's equations

results in the MRTD equations. Generally, the fea-

tures of the 3D-MRTD algorithm are similar to those

of the 2D-MRTD algorithm. Nevertheless, there are

some di�erences as far as it concerns the implemen-

tation of the excitation and of the PML absorber.

In order to use a pulse excitation with respect to

space at a speci�c grid point for a 2D geometry

and to obtain an excitation identical to that used by

FDTD, the pulse is decomposed in terms of scaling

and wavelet functions on a square surface around the

excitation point. For the 3D-MRTD algorithm, this

decomposition takes place in a cubic volume around

this point, since the excitation a�ects the amplitudes

of the scaling and the wavelet function in all 3 direc-

tions. It has been observed that 4 cells along each

direction around the excitation point provide an ac-

curate representation of the source for most cases.

The maximum allowable time step required for the

stability of 3D-MRTD algorithms has to contain the

e�ect of all three space discretizations. For a sum-

mation stencil of 9 terms per direction and for 0-

resolution wavelet expansion it takes the value

�tmax =
0:37 cp

1=(�x)2 + 1=(�y)2 + 1=(�z)2

where c is the velocity of light. For larger stencils, the

maximum value of the time step takes lower values.
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The size of the stencil a�ects signi�cantly the dis-

persion characteristics of the used algorithm. Larger

stencil for the summations including scaling func-

tions coe�cients improves the phase error perfor-

mance for medium and high sampling rates (dis-

cretization size � �=10). Increasing the stencil size

in summations of wavelet functions coe�cients o�ers

a better dispersion performance for lower sampling

rates (between �=2:2 and �=5). In our simulations,

the used stencil size has had the value of 9 for a

phase error smaller than 10 for most discretizations.

The use of the non-localized Battle-Lemarie basis

functions causes signi�cant e�ects. Localized bound-

ary conditions are impossible to be directly imple-

mented, so perfect electric and magnetic boundary

conditions are modelled by use of the image princi-

ple in a generic way. The implementation of image

theory in 3 dimensions is performed automatically

for any number of PEC, PMC boundaries.

Due to the nature of the Battle-Lemarie expansion

functions, the total �eld is a summation of the con-

tributions from the non-localized scaling and wavelet

functions in 3 directions. For example, the total elec-

tric �eld Ex(xo; yo; zo; to) with (k � 1=2)�t < to <

(k + 1=2)�t is calculated

Ex(xo; yo; zo; to) =
l1X

l0;m0;n0=�l1

kE
�x
l0+1=2;m0;n0

�l0+1=2(xo)�m0(yo)�n0(zo)+

X

i

l2;iX

l0;m0;n0=�l2;i

kE
 ix
l0+1=2;m0;n0

�l0+1=2(xo)�m0(yo) i;m0(zo)

where �m(x) = �( x
�x
�m) and  i;m(x) =  i(

x
�x
�m)

represent the Battle-Lemarie scaling and i-resolution

wavelet functions respectively. Only wavelets to z-

direction have been included for simplicity. For an

accuracy of 0.1% the values l1 = l2;i = 6 have been

used.

The purpose of a space adaptive grid is to use a

coarse mesh and implement a local magni�cation by

the selective use of wavelets. Wavelets are placed only

at locations where the EM �elds have signi�cant val-

ues, creating a space- and time- adaptive dense mesh

in regions of strong �eld variations without adding a

signi�cant computational overhead. There are many

di�erent ways to take advantage of the capability

of the MRTD technique to provide space and time

adaptive gridding. All of them rely on the fact that

the wavelet values can be thresholded without a�ect-

ing the accuracy of the algorithm. The simplest way

is to threshold the wavelet components to a fraction

(usually � 0:5%) of the scaling function coe�cient at

the same cell for each time-step. All components be-

low this threshold are eliminated from the subsequent

calculations. This procedure doesn't add any signi�-

cant overhead in execution time (usually� 12%), but

it o�ers only a moderate economy in memory require-

ments (round 28� 35%). Comparison of the wavelet

values over a speci�c space window of scaling neigh-

boors (often equal to the stencil size) would o�er a

more signi�cant economy in memory, but would de-

mand more execution time. Another way of creating

a space adaptive grid is to use an absolute threshold.

This requires the knowledge of the spatial �eld dis-

tribution in advance, something that makes it inap-

propriate for simulations of complicated structures.

Generally, in 3D cases where both memory and ex-

ecution requirements are high, the �rst thresholding

algorithm o�ers an optimized performance.

III Applications of Nonlinear

MRTD

Without loss of generality, the space adaptive algo-

rithm used in all simulations presented herein in-

cludes one resolution of wavelets only to the z- (lon-

gitudinal) direction. For validation purposes, this

scheme has been used for the analysis of the testing

structure of Figure (1). This �lter geometry contains

four bilateral E-plane �ns in a single WR62 waveg-

uide housing (15.799 mm � 7.899 mm). The thick-

ness of the �ns is t=0.9 mm and the gap width is

w=3.1mm. The agreement of data obtained from the

space adaptive grid for a relative threshold of 0:5%

and those obtained by use of mode matching [4] is

very good (Figure(2)).

Another evanescent-mode E-plane �nned waveguide

bandpass �lter geometry is shown in Figure(3). A

WR90 waveguide (22.86 mm � 10.16 mm) is used

at the input and output stages and a rectangular
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waveguide with a crossection of 7.06 mm � 6.98 mm

is used as the housing of the �lter. Geometrical pa-

rameters of the �lter take the values l1 = l2 =0.5

mm, l3 =7.75mm and l4=0.94mm. The width of the

�ns is chosen to be equal to the waveguide side length

a = w =7.06 mm. The MRTD space adaptive grid

is used to optimize the geometry. An 20x20x389 grid

is used for the simulations and 85,000 time steps are

considered. A Gabor pulse from 10-18 GHz is used

as the excitation along a plane at z = 44. Front and

back waveguides are terminated with 8 PML layers

with R = 10�5. A relative threshold of 0:5% is em-

ployed and o�ers economy in memory at least by

32%.

In the geometry under study, we have di�erent elec-

trical paths between the input and output ports;

one (the main path) is constructed with the coupled

TE10 � TE10 � TE10 modes, and the others (the

subsidiary paths) are constructed with the coupled

TE10�TEm0�TE10 modes, where TEm0 for m � 1

express the higher order evanescent modes. These

modes play primarily an important role to produce

a desired o�-passband performance, but it also af-

fects signi�cantly the passband behavior. Therefore,

we can not use the conventional synthesis method.

The slow velocity of the evanescent waves, require

the use of very dense grids of the conventional FDTD

algorithm for a large number of time-steps (close to

150,000). For example, a grid of 90x20x778 has been

used for 135,000 steps to provide comparable results.

On the contrary, space adaptive MRTD algorithms

can use coarse grids everywhere except from the ar-

eas that the evanescent modes have signi�cant val-

ues. Localized use of wavelets in these regions o�er

the necessary grid magni�cation. This e�ect can be

observed in Figure(4) that shows the wavelet coe�-

cients amplitude for an arbitrary time step after the

pulse has propagated along the whole structure. The

results from the optimization (Figures (5)-(7)) show

that as the used �ns get wider and come closer, the

S21 gets higher values without a�ecting the signi�-

cantly the bandwidth of the �lter.

IV Conclusion

A space adaptive 3D algorithm based on Battle-

Lemarie scaling and wavelet functions has been ap-

plied in the numerical modeling of evanescent-mode

waveguide bandpass �lters. The S-parameters of one

speci�c geometry are calculated and o�er memory

savings by a factor of 3-6 per dimension and exe-

cution time savings by a factor of 2.5 compared to

results obtained by the conventional FDTD.
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Figure 1: Validation Structure.

3

0-7803-4471-5/98/$10.00 (c) 1998 IEEE



MRTD             

Mode Matching [4]

12 13 14 15 16 17 18
−40

−35

−30

−25

−20

−15

−10

−5

0

Frequency [GHz]

S
11

 [d
B

]

Figure 2: Validation Data.
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Figure 3: Optimized Filter Geometry.
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Figure 4: Wavelet Coe�cients Spatial Distri-

bution (�z : cell size to the z-direction).
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Figure 5: S-Parameters for l1 = l4 =1.0mm,

l2 =0.5mm, l3 =6.75mm.
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Figure 6: Parametric Variation of S21 for l2.
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Figure 7: Parametric Variation of S21 for l3.
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