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Abstract- The MRTD scheme is applied to the anal-
ysis of evanescent waveguide filters. Specifically, a
space adaptive algorithm in 3 dimensions is imple-
mented by thesholding the wavelet values. The re-
sults are compared to those obtained by use of the
conventional FDTD to indicate considerable savings
in memory and computational time.

I Introduction

The Space Adaptive Gridding [1], based on the ap-
plication of the Multiresolution Analysis principles
to the discretization of the time-domain Maxwell’s
equations [2, 3], has been employed in the analysis of
linear and nonlinear structures. It has offered signif-
icant savings in memory and execution time require-
ments. The application of the wavelets improve the
conditioning of the simulating algorithm and allow
for a space adaptive grid by thresholding the wavelet
coefficients. This adaptivity is useful especially in
evanescent mode structures that require time-domain
simulations for a large time span in order to take into

consideration the slow wave propagation.

In this paper, a space adaptive grid is applied for
the analysis of evanescent-mode waveguide bandpass
filters [4, 5, 6]. These structures have found many
applications in satellite communication systems, as
preselectors or in multiplexers, due to several ad-
vantages over the conventional coupled resonator fil-
ters, such as compactness and wide stopbands. The
S-parameters of one specific geometry are calculated
and compared to results obtained by the conventional
FDTD.

II The MRTD scheme

The 3D-MRTD scheme can be derived by repre-
senting the field components as a series of cubic
spline Battle-Lemarie scaling and wavelet functions
in space-domain and pulse function in time. Applying
the Method of Moments to the Maxwell’s equations
results in the MRTD equations. Generally, the fea-
tures of the 3D-MRTD algorithm are similar to those
of the 2D-MRTD algorithm. Nevertheless, there are
some differences as far as it concerns the implemen-
tation of the excitation and of the PML absorber.

In order to use a pulse excitation with respect to
space at a specific grid point for a 2D geometry
and to obtain an excitation identical to that used by
FDTD, the pulse is decomposed in terms of scaling
and wavelet functions on a square surface around the
excitation point. For the 3D-MRTD algorithm, this
decomposition takes place in a cubic volume around
this point, since the excitation affects the amplitudes
of the scaling and the wavelet function in all 3 direc-
tions. It has been observed that 4 cells along each
direction around the excitation point provide an ac-

curate representation of the source for most cases.

The maximum allowable time step required for the
stability of 3D-MRTD algorithms has to contain the
effect of all three space discretizations. For a sum-
mation stencil of 9 terms per direction and for O-
resolution wavelet expansion it takes the value

0.37 ¢

Atma::: =
V1/(Ax)? +1/(Ay)? +1/(Az)?

where c is the velocity of light. For larger stencils, the

maximum value of the time step takes lower values.
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The size of the stencil affects significantly the dis-
persion characteristics of the used algorithm. Larger
stencil for the summations including scaling func-
tions coefficients improves the phase error perfor-
mance for medium and high sampling rates (dis-
cretization size < A/10). Increasing the stencil size
in summations of wavelet functions coefficients offers
a better dispersion performance for lower sampling
rates (between A/2.2 and A/5). In our simulations,
the used stencil size has had the value of 9 for a

phase error smaller than 1° for most discretizations.

The use of the non-localized Battle-Lemarie basis
functions causes significant effects. Localized bound-
ary conditions are impossible to be directly imple-
mented, so perfect electric and magnetic boundary
conditions are modelled by use of the image princi-
ple in a generic way. The implementation of image
theory in 3 dimensions is performed automatically
for any number of PEC, PMC boundaries.

Due to the nature of the Battle-Lemarie expansion
functions, the total field is a summation of the con-
tributions from the non-localized scaling and wavelet
functions in 3 directions. For example, the total elec-
tric field E, (2, Yo, 20, to) With (K — 1/2) At < t, <
(k + 1/2) At is calculated

I E(%0,Yo, %0, to) =

Z kEﬁj—l/zm’,n’ D 1172(T0) P (Yo) P (20)+

U'm!' n'=—I;
l2,i
Z Z kE;/r};wl/lm/’nr ¢l’+1/2 (xo) G (yo) Yim (Zo)
i l’,m’,n’:—lz,i

where 6, (2) = (2 —m) and i, () = ;2 —m)
represent the Battle-Lemarie scaling and i-resolution
wavelet functions respectively. Only wavelets to z-
direction have been included for simplicity. For an
accuracy of 0.1% the values i1 =l ; = 6 have been
used.

The purpose of a space adaptive grid is to use a
coarse mesh and implement a local magnification by
the selective use of wavelets. Wavelets are placed only
at locations where the EM fields have significant val-
ues, creating a space- and time- adaptive dense mesh
in regions of strong field variations without adding a

significant computational overhead. There are many

different ways to take advantage of the capability
of the MRTD technique to provide space and time
adaptive gridding. All of them rely on the fact that
the wavelet values can be thresholded without affect-
ing the accuracy of the algorithm. The simplest way
is to threshold the wavelet components to a fraction
(usually < 0.5%) of the scaling function coefficient at
the same cell for each time-step. All components be-
low this threshold are eliminated from the subsequent
calculations. This procedure doesn’t add any signifi-
cant overhead in execution time (usually < 12%), but
it offers only a moderate economy in memory require-
ments (round 28 — 35%). Comparison of the wavelet
values over a specific space window of scaling neigh-
boors (often equal to the stencil size) would offer a
more significant economy in memory, but would de-
mand more execution time. Another way of creating
a space adaptive grid is to use an absolute threshold.
This requires the knowledge of the spatial field dis-
tribution in advance, something that makes it inap-
propriate for simulations of complicated structures.
Generally, in 3D cases where both memory and ex-
ecution requirements are high, the first thresholding

algorithm offers an optimized performance.

IIT Applications of Nonlinear
MRTD

Without loss of generality, the space adaptive algo-
rithm used in all simulations presented herein in-
cludes one resolution of wavelets only to the z- (lon-
gitudinal) direction. For validation purposes, this
scheme has been used for the analysis of the testing
structure of Figure (1). This filter geometry contains
four bilateral E-plane fins in a single WR62 waveg-
uide housing (15.799 mm X 7.899 mm). The thick-
ness of the fins is t=0.9 mm and the gap width is
w=3.1lmm. The agreement of data obtained from the
space adaptive grid for a relative threshold of 0.5%
and those obtained by use of mode matching [4] is
very good (Figure(2)).

Another evanescent-mode E-plane finned waveguide
bandpass filter geometry is shown in Figure(3). A

WRI0 waveguide (22.86 mm x 10.16 mm) is used
at the input and output stages and a rectangular
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waveguide with a crossection of 7.06 mm x 6.98 mm
is used as the housing of the filter. Geometrical pa-
rameters of the filter take the values Iy = [ =0.5
mm, [3 =7.75mm and [,=0.94mm. The width of the
fins is chosen to be equal to the waveguide side length
a = w =7.06 mm. The MRTD space adaptive grid
is used to optimize the geometry. An 20x20x389 grid
is used for the simulations and 85,000 time steps are
considered. A Gabor pulse from 10-18 GHz is used
as the excitation along a plane at z = 44. Front and
back waveguides are terminated with 8 PML layers
with R = 107°. A relative threshold of 0.5% is em-
ployed and offers economy in memory at least by
32%.

In the geometry under study, we have different elec-
trical paths between the input and output ports;
one (the main path) is constructed with the coupled
TE,y — TEy g — TE)y modes, and the others (the
subsidiary paths) are constructed with the coupled
TFEi9—TE,0—TE;y modes, where T E,,o for m > 1
express the higher order evanescent modes. These
modes play primarily an important role to produce
a desired off-passband performance, but it also af-
fects significantly the passband behavior. Therefore,
we can not use the conventional synthesis method.
The slow velocity of the evanescent waves, require
the use of very dense grids of the conventional FDTD
algorithm for a large number of time-steps (close to
150,000). For example, a grid of 90x20x778 has been
used for 135,000 steps to provide comparable results.
On the contrary, space adaptive MRTD algorithms
can use coarse grids everywhere except from the ar-
eas that the evanescent modes have significant val-
ues. Localized use of wavelets in these regions offer
the necessary grid magnification. This effect can be
observed in Figure(4) that shows the wavelet coeffi-
cients amplitude for an arbitrary time step after the
pulse has propagated along the whole structure. The
results from the optimization (Figures (5)-(7)) show
that as the used fins get wider and come closer, the
Sa1 gets higher values without affecting the signifi-
cantly the bandwidth of the filter.

IV Conclusion

A space adaptive 3D algorithm based on Battle-
Lemarie scaling and wavelet functions has been ap-
plied in the numerical modeling of evanescent-mode
waveguide bandpass filters. The S-parameters of one
specific geometry are calculated and offer memory
savings by a factor of 3-6 per dimension and exe-
cution time savings by a factor of 2.5 compared to
results obtained by the conventional FDTD.
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Figure 1: Validation Structure.
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